

A263495


Decimal expansion of the generalized hypergeometric function 3F2(3/2, 3/2, 3/2; 2, 2; x) at x=1/4.


1



1, 2, 6, 9, 9, 6, 7, 3, 7, 7, 6, 5, 0, 7, 3, 9, 7, 6, 0, 5, 6, 0, 6, 0, 0, 2, 9, 6, 1, 5, 6, 0, 1, 0, 9, 1, 3, 6, 0, 3, 8, 8, 4, 9, 7, 8, 5, 2, 6, 8, 9, 0, 7, 6, 9, 5, 4, 5, 1, 7, 8, 6, 3, 8, 7, 0, 6, 9, 5, 6, 6, 5, 7, 6, 1, 9, 0, 7, 5, 9, 3, 4, 7, 9, 1, 5, 1, 1, 2, 9, 6, 6, 2, 3, 9, 3, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Multiplication with Pi^2/64 gives 0.195844.. = integral_{x=0..infinity} x*I_1(x)*K_0(x)^2 dx, where I and K are Modified Bessel Functions.


LINKS



EXAMPLE

1.269967377650739760560600...


MATHEMATICA

RealDigits[HypergeometricPFQ[{3/2, 3/2, 3/2}, {2, 2}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



