login
A263497
Decimal expansion of the Gaussian Hypergeometric Function 2F1(2,2; 5/2; x) at x=1/4.
1
1, 5, 8, 1, 6, 0, 0, 8, 4, 7, 6, 8, 7, 7, 0, 9, 5, 3, 2, 5, 4, 1, 2, 2, 8, 9, 8, 9, 8, 1, 0, 4, 5, 9, 0, 2, 3, 6, 2, 1, 2, 4, 5, 0, 0, 2, 5, 4, 3, 0, 1, 2, 5, 6, 5, 9, 0, 6, 8, 2, 0, 0, 8, 6, 1, 4, 9, 1, 6, 9, 0, 9, 1, 8, 3, 1, 5, 2, 8, 1, 5, 5, 0, 8, 7, 8, 3, 3, 3, 4, 9, 0, 5
OFFSET
1,2
COMMENTS
Division through 6 gives 0.2630001.. = integral_{x=0..infinity} x^2*I_1(x)*K_0(x)^2 dx, where I and K are Modified Bessel Functions.
EXAMPLE
1.581600847687...
MATHEMATICA
RealDigits[Hypergeometric2F1[2, 2, 5/2, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Sequence in context: A193743 A372869 A195356 * A198139 A247277 A171709
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 19 2015
STATUS
approved