login
A372869
Decimal expansion of the number whose continued fraction coefficients are given in A084580.
2
5, 8, 1, 5, 8, 0, 3, 3, 5, 8, 8, 2, 8, 3, 2, 9, 8, 5, 6, 1, 4, 5, 0, 0, 6, 0, 7, 2, 2, 8, 0, 6, 5, 5, 2, 4, 7, 7, 6, 3, 0, 5, 6, 6, 9, 6, 2, 0, 0, 9, 2, 3, 0, 1, 3, 6, 2, 1, 2, 1, 5, 5, 5, 1, 5, 7, 6, 7, 1, 0, 4, 9, 1, 2, 4, 1, 9, 5, 3, 4, 0, 8, 9, 4, 9, 2, 0, 1, 2, 6, 9, 4, 1, 4, 2, 1, 2, 9, 0, 9, 2, 8, 0, 5, 9, 2, 1, 2, 8, 8, 7, 8, 6, 1, 7, 6, 8, 0, 8, 0, 4, 1, 3, 2, 1, 3, 6, 3, 7, 5, 7, 8, 3, 2, 6
OFFSET
0,1
EXAMPLE
0.5815803358828329856145006072280655247763056696200923013621215551576710...
PROG
(Python) # Using `sample_gauss_kuzmin_distribution` function from A084580.
from mpmath import mp, iv
def decimal_from_cf(coeffs):
num = iv.mpf([coeffs[-1], coeffs[-1]+1])
for coeff in coeffs[-2::-1]:
num = coeff + 1/iv.mpf(num)
return 1/num
def get_matching_digits(interval_a, interval_b):
match_index = 0
for i, j in zip(interval_a, interval_b):
if i != j: break
match_index += 1
return interval_a[:match_index]
def compute_kuzmin_digits(prec, num_coeffs):
assert prec > num_coeffs
mp.dps = iv.dps = prec
coeffs = sample_gauss_kuzmin_distribution(num_coeffs)
x = decimal_from_cf(coeffs)
a = mp.nstr(mp.mpf(x.a), n=prec, strip_zeros=False)
b = mp.nstr(mp.mpf(x.b), n=prec, strip_zeros=False)
return get_matching_digits(a, b)
num = compute_kuzmin_digits(prec=200, num_coeffs=180)
A372869 = [int(d) for d in num[1:] if d != '.']
CROSSREFS
Cf. A084580 (continued fraction).
Sequence in context: A275688 A330867 A193743 * A195356 A263497 A198139
KEYWORD
cons,nonn
AUTHOR
Jwalin Bhatt, Jul 04 2024
STATUS
approved