login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372869
Decimal expansion of the number whose continued fraction coefficients are given in A084580.
2
5, 8, 1, 5, 8, 0, 3, 3, 5, 8, 8, 2, 8, 3, 2, 9, 8, 5, 6, 1, 4, 5, 0, 0, 6, 0, 7, 2, 2, 8, 0, 6, 5, 5, 2, 4, 7, 7, 6, 3, 0, 5, 6, 6, 9, 6, 2, 0, 0, 9, 2, 3, 0, 1, 3, 6, 2, 1, 2, 1, 5, 5, 5, 1, 5, 7, 6, 7, 1, 0, 4, 9, 1, 2, 4, 1, 9, 5, 3, 4, 0, 8, 9, 4, 9, 2, 0, 1, 2, 6, 9, 4, 1, 4, 2, 1, 2, 9, 0, 9, 2, 8, 0, 5, 9, 2, 1, 2, 8, 8, 7, 8, 6, 1, 7, 6, 8, 0, 8, 0, 4, 1, 3, 2, 1, 3, 6, 3, 7, 5, 7, 8, 3, 2, 6
OFFSET
0,1
EXAMPLE
0.5815803358828329856145006072280655247763056696200923013621215551576710...
PROG
(Python) # Using `sample_gauss_kuzmin_distribution` function from A084580.
from mpmath import mp, iv
def decimal_from_cf(coeffs):
num = iv.mpf([coeffs[-1], coeffs[-1]+1])
for coeff in coeffs[-2::-1]:
num = coeff + 1/iv.mpf(num)
return 1/num
def get_matching_digits(interval_a, interval_b):
match_index = 0
for i, j in zip(interval_a, interval_b):
if i != j: break
match_index += 1
return interval_a[:match_index]
def compute_kuzmin_digits(prec, num_coeffs):
assert prec > num_coeffs
mp.dps = iv.dps = prec
coeffs = sample_gauss_kuzmin_distribution(num_coeffs)
x = decimal_from_cf(coeffs)
a = mp.nstr(mp.mpf(x.a), n=prec, strip_zeros=False)
b = mp.nstr(mp.mpf(x.b), n=prec, strip_zeros=False)
return get_matching_digits(a, b)
num = compute_kuzmin_digits(prec=200, num_coeffs=180)
A372869 = [int(d) for d in num[1:] if d != '.']
CROSSREFS
Cf. A084580 (continued fraction).
Sequence in context: A275688 A330867 A193743 * A195356 A263497 A198139
KEYWORD
cons,nonn
AUTHOR
Jwalin Bhatt, Jul 04 2024
STATUS
approved