login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247277 Decimal expansion of gamma_3, a lattice sum constant, analog of Euler's constant for 3-dimensional lattices. 0
5, 8, 1, 7, 4, 8, 0, 4, 5, 6, 5, 9, 7, 2, 2, 6, 7, 6, 5, 5, 4, 8, 9, 9, 2, 6, 5, 8, 4, 6, 8, 5, 3, 1, 7, 7, 1, 4, 6, 0, 2, 2, 4, 6, 5, 6, 3, 1, 4, 4, 4, 9, 2, 4, 3, 1, 3, 6, 4, 0, 0, 8, 7, 5, 4, 3, 8, 9, 5, 6, 2, 1, 9, 4, 8, 9, 2, 7, 8, 6, 3, 8, 0, 3, 4, 3, 4, 7, 4, 4, 7, 9, 9, 5, 9, 0, 4, 4, 5, 3, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 80.
LINKS
Eric Weisstein's MathWorld, Lattice Sum
FORMULA
gamma_3 = (1/8)*(delta_3 + 3*(- Pi/6 + log((sqrt(3) + 1)/(sqrt(3) - 1))) - 12*gamma_2 - 6*EulerGamma).
EXAMPLE
0.58174804565972267655489926584685317714602246563144492431364...
MATHEMATICA
digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n))*Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], k = k + dk]; Pi0 = s[k]; delta2 = 2*Zeta[1/2]*(Zeta[1/2, 1/4] - Zeta[1/2, 3/4]); delta3 = Pi0 + Pi/6; gamma2 = (1/4)*(delta2 + 2*Log[(Sqrt[2] + 1)/(Sqrt[2] - 1)] - 4*EulerGamma); gamma3 = (1/8)*(delta3 + 3*(- Pi/6 + Log[(Sqrt[3] + 1)/(Sqrt[3] - 1)]) - 12*gamma2 - 6*EulerGamma); RealDigits[gamma3, 10, 102] // First
CROSSREFS
Cf. A247042 (delta_2), A247043 (gamma_2), A247046 (delta_3).
Sequence in context: A195356 A263497 A198139 * A171709 A093157 A122998
KEYWORD
nonn,cons
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 21:38 EST 2024. Contains 370400 sequences. (Running on oeis4.)