login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2 ; 1,1; x) at x=1/4.
2

%I #11 Apr 10 2016 05:44:50

%S 1,0,3,5,1,2,0,6,6,1,4,2,5,6,4,8,9,8,1,0,4,5,9,5,7,5,5,1,4,5,0,8,6,2,

%T 8,4,9,9,7,4,9,4,8,7,3,2,4,4,9,8,5,9,5,7,0,6,9,1,6,1,7,7,5,7,7,1,3,6,

%U 2,0,0,0,7,7,7,0,2,3,5,5,4,2,9,4,7,5,0,2,0,5,4,0,1,3,0,3,7,6,8,9,9

%N Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2 ; 1,1; x) at x=1/4.

%C Multiplication with Pi^2/4 gives 2.554057.. = integral_{x=0..infinity} I_0(x) *K_0(x)^2 dx, where I and K are Modified Bessel Functions.

%F Square of A243308.

%F From _Vaclav Kotesovec_, Apr 10 2016: (Start)

%F Equals 3^(1/2) * Gamma(1/3)^6 / (2^(8/3) * Pi^4).

%F Equals Gamma(1/6)^3 / (3 * 2^(5/3) * Pi^(5/2)).

%F (End)

%e 1.0351206614256489810459575514...

%p evalf(4*EllipticK(sqrt(2-sqrt(3))/2)^2 / Pi^2, 120); # _Vaclav Kotesovec_, Apr 10 2016

%t RealDigits[HypergeometricPFQ[{1/2, 1/2, 1/2}, {1, 1}, 1/4], 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)

%t RealDigits[4*EllipticK[(2 - Sqrt[3])/4]^2 / Pi^2, 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)

%K cons,nonn

%O 1,3

%A _R. J. Mathar_, Oct 19 2015