The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190179 Decimal expansion of (1+sqrt(-3+4*sqrt(2)))/2. 7
 1, 3, 1, 4, 9, 9, 2, 9, 8, 3, 0, 2, 0, 7, 7, 1, 1, 9, 7, 1, 1, 9, 1, 6, 4, 2, 0, 3, 6, 3, 8, 2, 6, 3, 0, 4, 4, 5, 6, 4, 9, 0, 9, 3, 4, 6, 6, 3, 3, 7, 5, 6, 0, 0, 3, 2, 0, 8, 0, 0, 3, 1, 7, 2, 6, 0, 5, 6, 0, 2, 8, 8, 6, 5, 3, 6, 0, 3, 8, 8, 6, 6, 1, 9, 2, 6, 2, 4, 0, 6, 2, 5, 8, 0, 8, 8, 0, 9, 3, 2, 4, 8, 0, 9, 9, 1, 8, 4, 8, 1, 5, 5, 0, 8, 9, 5, 5, 3, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let R denote a rectangle whose shape (i.e., length/width) is (1+sqrt(-3+4*sqrt(2)))/2.  R can be partitioned into squares and silver rectangles in a manner that matches the periodic continued fraction [1,r,1,r,...], where r is the silver ratio: 1+sqrt(2)=[2,2,2,2,2,...].  R can also be partitioned into squares so as to match the nonperiodic continued fraction [1,3,5,1,2,1,1,1,2,...] at A190180.  For details, see A188635. The real value a-1 is the only invariant point of the complex-plane mapping M(c,z)=sqrt(c-sqrt(c+z)), with c = sqrt(2), and its only attractor, convergent from any starting complex-plane location. - Stanislav Sykora, Apr 29 2016 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10001 FORMULA Equals 1+sqrt(c-sqrt(c+sqrt(c-sqrt(c+ ...)))), with c=sqrt(2). - Stanislav Sykora, Apr 29 2016 EXAMPLE 1.314992983020771197119164203638263044565... MATHEMATICA r = 1 + 2^(1/2)); FromContinuedFraction[{1, r, {1, r}}] FullSimplify[%] ContinuedFraction[%, 100]  (* A190180 *) RealDigits[N[%%, 120]]     (* A190179 *) N[%%%, 40] RealDigits[(1+Sqrt[4Sqrt[2]-3])/2, 10, 120][[1]]  Harvey P. Dale, May 19 2012 PROG (PARI) (1+sqrt(-3+4*sqrt(2)))/2 \\ Altug Alkan, Apr 29 2016 (MAGMA) (1+Sqrt(-3+4*Sqrt(2)))/2; // G. C. Greubel, Dec 28 2017 CROSSREFS Cf. A188635, A190180, A190177, A190178. Sequence in context: A202353 A108621 A193792 * A025116 A178300 A081720 Adjacent sequences:  A190176 A190177 A190178 * A190180 A190181 A190182 KEYWORD nonn,cons AUTHOR Clark Kimberling, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 07:50 EDT 2022. Contains 356160 sequences. (Running on oeis4.)