The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202353 Decimal expansion of the number x satisfying 2*x + 2 = exp(-x), negated. 2
 3, 1, 4, 9, 2, 3, 0, 5, 7, 8, 4, 5, 4, 0, 6, 0, 5, 3, 9, 7, 1, 7, 5, 0, 5, 1, 9, 4, 6, 2, 3, 6, 9, 8, 1, 1, 5, 8, 5, 9, 4, 4, 2, 8, 4, 3, 1, 9, 1, 7, 9, 4, 6, 6, 4, 5, 9, 0, 1, 9, 8, 4, 5, 0, 1, 2, 4, 9, 6, 1, 2, 1, 4, 8, 8, 8, 1, 1, 8, 5, 2, 1, 8, 8, 0, 3, 4, 4, 4, 4, 4, 8, 2, 0, 8, 0, 0, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A202322 for a guide to related sequences. The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 FORMULA Equals W(e/2) - 1, where W(x) is the Lambert W-function. - G. C. Greubel, Jun 09 2017 EXAMPLE x = -0.3149230578454060539717505194623698115859... MATHEMATICA u = 2; v = 2; f[x_] := u*x + v; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110] RealDigits[r] (* A202353 *) (* other program *) RealDigits[ ProductLog[E/2] - 1, 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *) PROG (PARI) lambertw(exp(1)/2) - 1 \\ G. C. Greubel, Jun 09 2017 CROSSREFS Cf. A202322. Sequence in context: A094166 A266131 A338871 * A108621 A193792 A190179 Adjacent sequences: A202350 A202351 A202352 * A202354 A202355 A202356 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 20:02 EDT 2024. Contains 375144 sequences. (Running on oeis4.)