The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193792 Triangular array:  the fusion of polynomial sequences P and Q given by p(n,x)=(x+3)^n and q(n,x)=1+x^n. 2
 1, 1, 1, 3, 1, 4, 9, 6, 1, 16, 27, 27, 9, 1, 64, 81, 108, 54, 12, 1, 256, 243, 405, 270, 90, 15, 1, 1024, 729, 1458, 1215, 540, 135, 18, 1, 4096, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 16384, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 65536 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. LINKS EXAMPLE First six rows: 1 1....1 3....1....4 9....6....1....16 27...27...9....1...64 81...108..54...12..1...256 MATHEMATICA z = 8; a = 1; b = 3; p[n_, x_] := (a*x + b)^n q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193792 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]]  (* A193793 *) CROSSREFS Cf. A193722, A193733. Sequence in context: A338871 A202353 A108621 * A190179 A025116 A178300 Adjacent sequences:  A193789 A193790 A193791 * A193793 A193794 A193795 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 12:09 EDT 2022. Contains 356145 sequences. (Running on oeis4.)