login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193792
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+3)^n and q(n,x)=1+x^n.
2
1, 1, 1, 3, 1, 4, 9, 6, 1, 16, 27, 27, 9, 1, 64, 81, 108, 54, 12, 1, 256, 243, 405, 270, 90, 15, 1, 1024, 729, 1458, 1215, 540, 135, 18, 1, 4096, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 16384, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 65536
OFFSET
0,4
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1....1
3....1....4
9....6....1....16
27...27...9....1...64
81...108..54...12..1...256
MATHEMATICA
z = 8; a = 1; b = 3;
p[n_, x_] := (a*x + b)^n
q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193792 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193793 *)
CROSSREFS
Sequence in context: A338871 A202353 A108621 * A190179 A025116 A178300
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 05 2011
STATUS
approved