login
A193793
Mirror of the triangle A193792.
2
1, 1, 1, 4, 1, 3, 16, 1, 6, 9, 64, 1, 9, 27, 27, 256, 1, 12, 54, 108, 81, 1024, 1, 15, 90, 270, 405, 243, 4096, 1, 18, 135, 540, 1215, 1458, 729, 16384, 1, 21, 189, 945, 2835, 5103, 5103, 2187, 65536, 1, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561
OFFSET
0,4
COMMENTS
A193793 is obtained by reversing the rows of the triangle A193792.
FORMULA
Write w(n,k) for the triangle at A193792. The triangle at A193793 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1....1
4....1....3
16....1....6....9
64..1....9....27...27
256...1...12....54...108....81
MATHEMATICA
z = 8; a = 1; b = 3;
p[n_, x_] := (a*x + b)^n
q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193792 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193793 *)
CROSSREFS
Cf. A193792.
Sequence in context: A156224 A162516 A336693 * A301510 A085471 A064221
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 05 2011
STATUS
approved