login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+3)^n and q(n,x)=1+x^n.
2

%I #4 Mar 30 2012 18:57:38

%S 1,1,1,3,1,4,9,6,1,16,27,27,9,1,64,81,108,54,12,1,256,243,405,270,90,

%T 15,1,1024,729,1458,1215,540,135,18,1,4096,2187,5103,5103,2835,945,

%U 189,21,1,16384,6561,17496,20412,13608,5670,1512,252,24,1,65536

%N Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+3)^n and q(n,x)=1+x^n.

%C See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.

%e First six rows:

%e 1

%e 1....1

%e 3....1....4

%e 9....6....1....16

%e 27...27...9....1...64

%e 81...108..54...12..1...256

%t z = 8; a = 1; b = 3;

%t p[n_, x_] := (a*x + b)^n

%t q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0;

%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

%t g[n_] := CoefficientList[w[n, x], {x}]

%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]

%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193792 *)

%t TableForm[Table[g[n], {n, -1, z}]]

%t Flatten[Table[g[n], {n, -1, z}]] (* A193793 *)

%Y Cf. A193722, A193733.

%K nonn,tabl

%O 0,4

%A _Clark Kimberling_, Aug 05 2011