login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272362
Expansion of (1 + x - x^2 - x^3 - x^4)/((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)).
3
1, 3, 6, 14, 32, 74, 171, 396, 917, 2124, 4920, 11397, 26401, 61158, 141673, 328187, 760249, 1761126, 4079670, 9450606, 21892446, 50714123, 117479896, 272143639, 630424122, 1460385314, 3383000731, 7836763241, 18153959452, 42053872709, 97418318825, 225670746387, 522769088906, 1211001092038
OFFSET
0,2
COMMENTS
Partial sums of A272642. - Wolfdieter Lang, May 06 2016
FORMULA
G.f.: (1 + x - x^2 - x^3 - x^4)/((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)).
a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5).
a(n) = floor(phi*a(n-1) + phi*a(n-2)), a(0)=1, a(1)=3, where phi is the golden ratio (A001622).
Limit_{n->infinity} a(n)/a(n-1) = 2/(sqrt(2*sqrt(5)-1) - 1) = sqrt(phi + phi*sqrt(phi + phi*sqrt(phi + ...))) = A189970.
Limit_{n->infinity} a(n-1)/a(n) = (sqrt(2*sqrt(5)-1) - 1)/2 = 1 + A190157.
MATHEMATICA
LinearRecurrence[{2, 1, 0, -1, -1}, {1, 3, 6, 14, 32}, 34]
RecurrenceTable[{a[n] == Floor[GoldenRatio a[n - 1] + GoldenRatio a[n - 2]], a[0] == 1, a[1] == 3}, a, {n, 33}]
CoefficientList[Series[(1 + x - x^2 - x^3 - x^4)/((1 - x) (1 - x - 2 x^2 - 2 x^3 - x^4)), {x, 0, 50}], x] (* Vincenzo Librandi, May 08 2016 *)
PROG
(PARI) Vec((1+x-x^2-x^3-x^4)/(1-2*x-x^2+x^4+x^5) + O(x^99)) \\ Altug Alkan, Apr 27 2016
(Magma) I:=[1, 3, 6, 14, 32]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5): n in [1..30]]; // Vincenzo Librandi, May 08 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 27 2016
STATUS
approved