login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272363
Number of ways to group the first 2*n natural numbers into n pairs (xi,yi) with yi>xi, and such that the 2*n numbers xi+yi and xi-yi are all different.
4
1, 1, 0, 2, 12, 64, 220, 1886, 16346, 142420, 1302106, 14467384, 177079358
OFFSET
0,4
LINKS
Mok-Kong Shen and Tsen-Pao Shen, Number theory Research Problem 39, Bull. Amer. Math. Soc. 68 (1962), 557.
FORMULA
a(n) >= A002968(n). - Altug Alkan, Oct 05 2018
a(n) <= A060963(n). - Chai Wah Wu, Oct 08 2018
EXAMPLE
For n=3, ((1,5), (2,3), (4,6)) is an instance of such grouping. ((2,3), (1,5), (4,6)) is considered to be the same grouping. The other one is ((1,3), (2,6), (4,5)). So a(3) = 2.
PROG
(PARI) okperm(vp, n) = {for (k=1, n-1, if (vp[k] > vp[k+1], return (0)); ); for (k=1, n, if (vp[k+n] <= vp[k], return (0)); ); 1; }
a(n) = {nb = 0; nn = 2*n; for (j=0, nn!-1, vp = numtoperm(nn, j); if (okperm(vp, n), vs = vector(n, k, vp[k]+vp[k+n]); vd = vector(n, k, vp[k]-vp[k+n]); if (#vs + #vd == #Set(concat(vs, vd)), nb++); ); ); nb; }
(Python)
from sympy.utilities.iterables import multiset_partitions
def A272363(n):
return 1 if n == 0 else sum(1 for p in multiset_partitions(list(range(1, 2*n+1)), n) if max(len(d) for d in p) == 2 and len(set([sum(d) for d in p]))+len(set([abs(d[0]-d[1]) for d in p])) == 2*n) # Chai Wah Wu, Oct 08 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Apr 27 2016
EXTENSIONS
a(0), a(7)-a(10) from Alois P. Heinz, Oct 05 2018
a(11)-a(12) from Giovanni Resta, Oct 11 2018
STATUS
approved