login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272642
Expansion of (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).
2
1, 2, 3, 8, 18, 42, 97, 225, 521, 1207, 2796, 6477, 15004, 34757, 80515, 186514, 432062, 1000877, 2318544, 5370936, 12441840, 28821677, 66765773, 154663743, 358280483, 829961192, 1922615417, 4453762510, 10317196211, 23899913257, 55364446116, 128252427562, 297098342519, 688232003132
OFFSET
0,2
REFERENCES
Based on a suggestion of Wolfdieter Lang in A272362.
FORMULA
G.f.: (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).
a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5). - Vincenzo Librandi, May 08 2016
MATHEMATICA
CoefficientList[Series[(x^4 + x^3 + x^2 - x - 1)/(x^4 + 2 x^3 + 2 x^2 + x - 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 08 2016 *)
LinearRecurrence[{1, 2, 2, 1}, {1, 2, 3, 8, 18}, 40] (* Harvey P. Dale, Oct 31 2024 *)
PROG
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1))); // Bruno Berselli, May 08 2016
CROSSREFS
A272362 gives partial sums.
Sequence in context: A129955 A034066 A034076 * A241906 A079224 A002369
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 07 2016
STATUS
approved