OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4, -4).
FORMULA
a(n) = A034007(n+2)-2^(n-2) for n > 1.
a(0) = 2, a(1) = 3; for n > 1, a(n) = (n+6)*2^(n-2).
G.f.: (2-5*x+4*x^2-2*x^3)/(1-2*x)^2.
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = 256*log(2) - 12347/70.
Sum_{n>=0} (-1)^n/a(n) = 21851/210 - 256*log(3/2). (End)
MATHEMATICA
Differences[LinearRecurrence[{4, -4}, {1, 1, 2, 6}, 40], 3] (* Harvey P. Dale, Sep 04 2020 *)
PROG
(Magma) m:=17; S:=&cat[ [ 1, 2*i ]: i in [0..m] ]; T:=[ &+[ Binomial(j-1, k-1)*S[k]: k in [1..j] ]: j in [1..2*m] ]; U:=[ T[n+1]-T[n]: n in[1..2*m-1] ]; V:=[ U[n+1]-U[n]: n in[1..2*m-2] ]; [ V[n+1]-V[n]: n in[1..2*m-3] ]; // Klaus Brockhaus, Jun 17 2007
(PARI) {m=29; print1(2, ", ", 3, ", "); for(n=2, m, print1((n+6)*2^(n-2), ", "))} \\ Klaus Brockhaus, Jun 17 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 10 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 17 2007
STATUS
approved