login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129955
Third differences of A129952.
4
2, 3, 8, 18, 40, 88, 192, 416, 896, 1920, 4096, 8704, 18432, 38912, 81920, 172032, 360448, 753664, 1572864, 3276800, 6815744, 14155776, 29360128, 60817408, 125829120, 260046848, 536870912, 1107296256, 2281701376, 4697620480
OFFSET
0,1
FORMULA
First differences of A129954: a(n) = A129954(n+1) - A129954(n).
a(n) = A034007(n+2)-2^(n-2) for n > 1.
a(0) = 2, a(1) = 3; for n > 1, a(n) = (n+6)*2^(n-2).
G.f.: (2-5*x+4*x^2-2*x^3)/(1-2*x)^2.
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=0} 1/a(n) = 256*log(2) - 12347/70.
Sum_{n>=0} (-1)^n/a(n) = 21851/210 - 256*log(3/2). (End)
MATHEMATICA
Differences[LinearRecurrence[{4, -4}, {1, 1, 2, 6}, 40], 3] (* Harvey P. Dale, Sep 04 2020 *)
PROG
(Magma) m:=17; S:=&cat[ [ 1, 2*i ]: i in [0..m] ]; T:=[ &+[ Binomial(j-1, k-1)*S[k]: k in [1..j] ]: j in [1..2*m] ]; U:=[ T[n+1]-T[n]: n in[1..2*m-1] ]; V:=[ U[n+1]-U[n]: n in[1..2*m-2] ]; [ V[n+1]-V[n]: n in[1..2*m-3] ]; // Klaus Brockhaus, Jun 17 2007
(PARI) {m=29; print1(2, ", ", 3, ", "); for(n=2, m, print1((n+6)*2^(n-2), ", "))} \\ Klaus Brockhaus, Jun 17 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Jun 10 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 17 2007
STATUS
approved