login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).
2

%I #18 Oct 31 2024 18:50:25

%S 1,2,3,8,18,42,97,225,521,1207,2796,6477,15004,34757,80515,186514,

%T 432062,1000877,2318544,5370936,12441840,28821677,66765773,154663743,

%U 358280483,829961192,1922615417,4453762510,10317196211,23899913257,55364446116,128252427562,297098342519,688232003132

%N Expansion of (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).

%D Based on a suggestion of _Wolfdieter Lang_ in A272362.

%H Vincenzo Librandi, <a href="/A272642/b272642.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,0,-1,-1).

%F G.f.: (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).

%F a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5). - _Vincenzo Librandi_, May 08 2016

%t CoefficientList[Series[(x^4 + x^3 + x^2 - x - 1)/(x^4 + 2 x^3 + 2 x^2 + x - 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 08 2016 *)

%t LinearRecurrence[{1,2,2,1},{1,2,3,8,18},40] (* _Harvey P. Dale_, Oct 31 2024 *)

%o (Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1))); // _Bruno Berselli_, May 08 2016

%Y A272362 gives partial sums.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 07 2016