login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272640
Number of permutations of [1..n] which achieve the worse case bound for a graph domination problem.
2
1, 1, 2, 4, 24, 56, 640, 1632, 30464, 81664, 2251008, 6241280, 238222336, 676506624, 34141233152, 98709925888, 6363055718400, 18655203885056, 1495281327013888, 4432984678858752, 432399526939590656, 1293646660855398400, 150872297033214984192
OFFSET
0,3
LINKS
C. Coscia, J. DeWitt, F. Yang, Y. Zhang, Online and Random Domination of Graphs, arXiv preprint arXiv:1509.08876 [math.CO], 2015.
Jonathan Dewitt, Christopher Coscia, Fan Yang, Yiguang Zhang, Best and Worst Case Permutations for Random Online Domination of the Path, Discrete Mathematics & Theoretical Computer Science, December 20, 2017, Vol. 19 no. 2, Permutation Patterns 2016.
FORMULA
Propositions 3.2 and 3.4 of Coscia et al. 2015 give formulas.
E.g.f.: sinh(x)/(cosh(x) - x*sinh(x)) + 1/(cosh(x) - x*sinh(x))^2 (see Theorem 3.5 of Coscia et al. 2015). - Gheorghe Coserea, May 12 2016
MATHEMATICA
terms = 23; egf = Sinh[x]/(Cosh[x] - x Sinh[x]) + 1/(Cosh[x] - x Sinh[x])^2 + O[x]^terms; CoefficientList[egf, x] Range[0, terms-1]! (* Jean-François Alcover, Sep 06 2018, after Gheorghe Coserea *)
PROG
(PARI) x = 'x + O('x^23);
Vec(serlaplace(sinh(x)/(cosh(x) - x*sinh(x)) + 1/(cosh(x) - x*sinh(x))^2)) \\ Gheorghe Coserea, May 12 2016
CROSSREFS
Sequence in context: A168054 A280075 A068506 * A192513 A192384 A119036
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 06 2016
EXTENSIONS
More terms from Gheorghe Coserea, May 12 2016
STATUS
approved