login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [1..n] which achieve the worse case bound for a graph domination problem.
2

%I #29 Sep 06 2018 09:09:12

%S 1,1,2,4,24,56,640,1632,30464,81664,2251008,6241280,238222336,

%T 676506624,34141233152,98709925888,6363055718400,18655203885056,

%U 1495281327013888,4432984678858752,432399526939590656,1293646660855398400,150872297033214984192

%N Number of permutations of [1..n] which achieve the worse case bound for a graph domination problem.

%H Gheorghe Coserea, <a href="/A272640/b272640.txt">Table of n, a(n) for n = 0..200</a>

%H C. Coscia, J. DeWitt, F. Yang, Y. Zhang, <a href="http://arxiv.org/abs/1509.08876">Online and Random Domination of Graphs</a>, arXiv preprint arXiv:1509.08876 [math.CO], 2015.

%H Jonathan Dewitt, Christopher Coscia, Fan Yang, Yiguang Zhang, <a href="https://dmtcs.episciences.org/4145">Best and Worst Case Permutations for Random Online Domination of the Path</a>, Discrete Mathematics & Theoretical Computer Science, December 20, 2017, Vol. 19 no. 2, Permutation Patterns 2016.

%F Propositions 3.2 and 3.4 of Coscia et al. 2015 give formulas.

%F E.g.f.: sinh(x)/(cosh(x) - x*sinh(x)) + 1/(cosh(x) - x*sinh(x))^2 (see Theorem 3.5 of Coscia et al. 2015). - _Gheorghe Coserea_, May 12 2016

%t terms = 23; egf = Sinh[x]/(Cosh[x] - x Sinh[x]) + 1/(Cosh[x] - x Sinh[x])^2 + O[x]^terms; CoefficientList[egf, x] Range[0, terms-1]! (* _Jean-François Alcover_, Sep 06 2018, after _Gheorghe Coserea_ *)

%o (PARI) x = 'x + O('x^23);

%o Vec(serlaplace(sinh(x)/(cosh(x) - x*sinh(x)) + 1/(cosh(x) - x*sinh(x))^2)) \\ _Gheorghe Coserea_, May 12 2016

%Y Cf. A113583, A272641.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, May 06 2016

%E More terms from _Gheorghe Coserea_, May 12 2016