login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272641
Number of permutations of [1..n] that achieve a lower bound on the dominating set.
2
1, 2, 2, 24, 64, 80, 3408, 9856, 13440, 1377792, 4139520, 5913600, 1191370752, 3659335680, 5381376000, 1878991994880, 5854937088000, 8782405632000, 4877246236262400, 15351645044736000, 23361198981120000, 19383120526049280000, 61467986759122944000
OFFSET
1,2
LINKS
C. Coscia, J. DeWitt, F. Yang, Y. Zhang, Online and Random Domination of Graphs, arXiv preprint arXiv:1509.08876 [math.CO], 2015.
Jonathan Dewitt, Christopher Coscia, Fan Yang, Yiguang Zhang, Best and Worst Case Permutations for Random Online Domination of the Path, Discrete Mathematics & Theoretical Computer Science, December 20, 2017, Vol. 19 no. 2, Permutation Patterns 2016.
FORMULA
Section 4 of Coscia et al. 2015 gives formulas.
MAPLE
A272641 := proc(n)
if modp(n, 3) = 0 then
n!/3^(n/3) ;
elif modp(n, 3) = 1 then
if n > 7 then
720*binomial(n, 7)*(n-4)/3*(n-7)!/3^((n-7)/3)
+2*(24*binomial(n, 2)*binomial(n-2, 5)*(n-7)!/3^((n-7)/3) *(n-4)/3 +9*binomial(n, 4) *(n-4)! /3^((n-4)/3) )
+6*binomial(n, 4)*(n-4)!/3^((n-4)/3)
+24^2 *binomial(10, 5) *binomial(n, 10) *binomial((n-4)/3, 2) *(n-10)! /3^((n-10)/3) ;
elif n = 1 then
1;
elif n = 4 then
24;
elif n = 7 then
3408;
end if;
else
if n > 2 then
24*binomial(n, 5) *(n-5)! /3^((n-5)/3) *(n-2)/3 +2*binomial(n, 2) *(n-2)! /3^((n-2)/3) ;
else
2;
end if;
end if ;
end proc: # R. J. Mathar, May 11 2016
MATHEMATICA
a[n_] := Which[Mod[n, 3] == 0, n!/3^(n/3), Mod[n, 3] == 1, Which[n > 7, 720*Binomial[n, 7]*(n - 4)/3*(n - 7)!/3^((n - 7)/3) + 2*(24*Binomial[n, 2]*Binomial[n - 2, 5]*(n - 7)!/3^((n - 7)/3)*(n - 4)/3 + 9*Binomial[n, 4] *(n - 4)! /3^((n - 4)/3)) + 6*Binomial[n, 4]*(n - 4)!/3^((n - 4)/3) + 24^2 *Binomial[10, 5]*Binomial[n, 10]*Binomial[(n - 4)/3, 2]*(n - 10)! /3^((n - 10)/3), n == 1, 1, n == 4, 24, n == 7, 3408], True, If[n > 2, 24*Binomial[n, 5]*(n - 5)! /3^((n - 5)/3)*(n - 2)/3 + 2*Binomial[n, 2] * (n - 2)! /3^((n - 2)/3), 2]];
Array[a, 23] (* Jean-François Alcover, Dec 03 2017, after R. J. Mathar *)
PROG
(PARI)
a(n) = {
if (n == 1, return(1));
my(c=(n, k)->binomial(n, k), b=n->if(n>=0, n!/3^(n\3), 0), r=n%3);
if (r == 0, b(n), r == 2, 24*c(n, 5)*b(n-5)*((n-2)\3) + 2*c(n, 2)*b(n-2),
720*c(n, 7)*((n-4)\3)*b(n-7) + 24^2*c(10, 5)*c(n, 10)*c((n-4)\3, 2)*b(n-10) +
6*c(n, 4)*b(n-4) + 18*c(n, 4)*b(n-4) + 48*c(n, 2)*c(n-2, 5)*b(n-7)*((n-4)\3));
};
vector(23, n, a(n)) \\ Gheorghe Coserea, Jun 02 2018
CROSSREFS
Sequence in context: A261517 A131448 A156447 * A334123 A127261 A239531
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 06 2016
STATUS
approved