login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) defined by A(x) = 1 +x*A(x) +x^2*A(x)^2 +3*x^3*A(x)^3.
0

%I #15 Aug 08 2018 15:23:16

%S 1,1,2,7,21,66,228,799,2843,10357,38278,143012,539980,2056848,7892496,

%T 30483351,118416903,462348219,1813410078,7141608015,28229040165,

%U 111956307486,445374729396,1776704142348,7105896093588,28487216564476,114454156300136,460781265916312

%N G.f. A(x) defined by A(x) = 1 +x*A(x) +x^2*A(x)^2 +3*x^3*A(x)^3.

%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F a(n) = 1/n*sum(j=0..n, binomial(n,j)*sum(i=j..n+j-1, binomial(j,i-j)*binomial(n-j,3*j-n-i-1)*3^(3*j-n-i-1))), n>0

%F Conjecture: 6*(2*n+3)*(n+1)*a(n) +(277*n^2-191*n-162)*a(n-1) +6*(-155*n^2+305*n-126)*a(n-2) -4*(181*n-195)*(n-2)*a(n-3) -5304*(n-2)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Sep 27 2013

%t m = maxExponent = 20;

%t A[_] = 0; Do[A[x_] = 1 + x A[x] + x^2 A[x]^2 + 3 x^3 A[x]^3 + O[x]^m, {m}];

%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Aug 08 2018 *)

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Feb 15 2011

%E Typo in definition corrected by _R. J. Mathar_, Sep 27 2013