The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005322 Column of Motzkin triangle. (Formerly M2799) 9
 1, 3, 9, 25, 69, 189, 518, 1422, 3915, 10813, 29964, 83304, 232323, 649845, 1822824, 5126520, 14453451, 40843521, 115668105, 328233969, 933206967, 2657946907, 7583013474, 21668135850, 62007732605, 177696228411, 509899901553, 1464990733969, 4214045993925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Number of returns (i.e., down steps hitting the x-axis) in all Motzkin paths of length n. E.g., a(4)=9 because in the nine Motzkin paths of length 4, HHHH, HHU(D), HU(D)H, HUH(D), U(D)HH, U(D)U(D), UH(D)H, UHH(D) and UUD(D), where H=(1,0), U=(1,1), D=(1,-1), we have altogether nine down steps D hitting the x-axis (shown in parentheses). - Emeric Deutsch, Dec 26 2003 Number of nonnegative H,U,D paths of length n that end at height 2. Bijection to the Deutsch manifestation above: turn the last U carrying the path up to height 2 into a D. This gives a Motzkin n-path with a marked return D. - David Callan, Jun 07 2006 Number of Motzkin paths of length n+2, starting with a (1,1) step, ending with a (1,-1) step and touching the x-axis at least three times. Example: a(3)=3 because we have UDHUD, UDUHD and UHDUD, where H=(1,0), U=(1,1), D=(1,-1). - Emeric Deutsch, Jul 27 2006 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 N. Benyahia Tani, Z. Yahi, and S. Bouroubi, Ordered and non-ordered non-isometric convex quadrilaterals inscribed in a regular n-gon, Bulletin du Laboratoire Liforce, 01 (2014) 1 - 9. R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301. Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018. Stephan Mertens, Exact site-percolation probability on the square lattice, J. Phys. A: Math. Theor., 55 (2022), 334002. See Eq. (9) and Appendix A. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics; arXiv:0912.0072 [math.NT], 2009. FORMULA a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1, 2, ..., n, s(0) = 0, s(n) = 2. G.f.: 2(1-z-q)/(1-z+q)^2, where q=sqrt(1-2z-3z^2). - Emeric Deutsch, Dec 26 2003 G.f.: z^2*M^3, where M=1+zM+z^2*M^2 is the g.f. of the Motzkin numbers (A001006). - Emeric Deutsch, Jul 27 2006 a(n) = -sqrt(-3)*(-1)^n*(3*n*(13*n+27)*hypergeom([1/2, n],[1],4/3) -hypergeom([1/2, n+1],[1],4/3)*(41*n^2+115*n+60))/(2*(n+3)*(n+5)*(n+6)). - Mark van Hoeij, Nov 12 2009 a(n) = sum(k=1..n+2, (k-2)*k*sum(j=k..n+2, C(-k+2*j-1,j-1)*(-1)^(n+2-j) * C(n+2,j)))/(n+2). - Vladimir Kruchinin, Sep, 26 2011 D-finite with recurrence a(n)*(4+n) = (9 + 4*n) a(n-1) - (n-1)*a(n-2) - 6*(n-1)*a(n-3). - Simon Plouffe, Feb 09 2012, corrected for offset Aug 17 2022 a(n) ~ 3^(n + 5/2) / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 17 2019 D-finite with recurrence -(n+4)*(n-2)*a(n) +n*(2*n+1)*a(n-1) +3*n*(n-1)*a(n-2)=0. - R. J. Mathar, Aug 17 2022 MAPLE M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: ser:=series(z^2*M^3, z=0, 35): seq(coeff(ser, z, n), n=2..28); # Emeric Deutsch, Jul 27 2006 MATHEMATICA CoefficientList[Series[2*(1 - x - Sqrt[1 - 2*x - 3*x^2])/(1 - x + Sqrt[1 - 2*x - 3*x^2])^2, {x, 0, 50}], x] (* G. C. Greubel, Mar 03 2017 *) PROG (Maxima) a(n):=sum((k-2)*k*sum(binomial(-k+2*j-1, j-1)*(-1)^(n+2-j)*binomial(n+2, j), j, k, n+2), k, 1, n+2)/(n+2) /* Vladimir Kruchinin, Sep, 26 2011 */ (PARI) x='x+O('x^50); Vec(2*(1 - x - sqrt(1 - 2*x - 3*x^2))/(1 - x + sqrt(1 - 2*x - 3*x^2))^2) \\ G. C. Greubel, Mar 03 2017 CROSSREFS Cf. A026300, A001006. A diagonal of triangle A020474. Sequence in context: A201533 A000242 A077846 * A103780 A211288 A206727 Adjacent sequences: A005319 A005320 A005321 * A005323 A005324 A005325 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:21 EST 2023. Contains 367502 sequences. (Running on oeis4.)