login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103780
Row sums of square of trinomial triangle A071675.
1
1, 1, 3, 9, 25, 69, 189, 519, 1428, 3930, 10812, 29742, 81816, 225070, 619156, 1703262, 4685565, 12889687, 35458707, 97544655, 268339161, 738183999, 2030697309, 5586319365, 15367609920, 42275319276, 116296719448
OFFSET
0,3
FORMULA
G.f.: 1/(1-x-2*x^2-4*x^3-6*x^4-8*x^5-8*x^6-6*x^7-3*x^8-x^9).
a(n) = a(n-1) +2a(n-2) +4a(n-3) +6a(n-4) +8a(n-5) +8a(n-6) +6a(n-7) +3a(n-8) +a(n-9).
MATHEMATICA
CoefficientList[Series[1/(1 - x - 2*x^2 - 4*x^3 - 6*x^4 - 8*x^5 - 8*x^6 - 6*x^7 - 3*x^8 - x^9), {x, 0, 50}], x] (* G. C. Greubel, Mar 03 2017 *)
LinearRecurrence[{1, 2, 4, 6, 8, 8, 6, 3, 1}, {1, 1, 3, 9, 25, 69, 189, 519, 1428}, 40] (* Harvey P. Dale, Jun 14 2020 *)
PROG
(Maxima)
a(n):=sum(sum((sum(binomial(j, n-3*k+2*j)*(-1)^(j-k)*binomial(k, j), j, 0, k)) *sum(binomial(j, -3*m+k+2*j)*binomial(m, j), j, 0, m), k, m, n), m, 0, n); /* Vladimir Kruchinin, Dec 01 2011 */
(PARI) x='x+O('x^50); Vec(1/(1 -x -2*x^2 -4*x^3 -6*x^4 -8*x^5 -8*x^6 -6*x^7 -3*x^8 -x^9)) \\ G. C. Greubel, Mar 03 2017
CROSSREFS
Sequence in context: A000242 A077846 A005322 * A211288 A206727 A211296
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 15 2005
STATUS
approved