login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243869
Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].
3
1, 5, 20, 70, 231, 735, 2290, 7040, 21461, 65065, 196560, 592410, 1782691, 5358995, 16098830, 48340180, 145107921, 435498525, 1306845100, 3921234350, 11765101151, 35298099655, 105899891370, 317710858920, 953154946381, 2859509578385, 8578618213640
OFFSET
4,2
COMMENTS
The number of ways to partition a set of n people around a circular table into 4 affinity groups with no two members of a group seated next to each other [Knuth].
The first two primes of the sequence are a(5) and a(96). - Bruno Berselli, Jun 13 2014
LINKS
D. E. Knuth and O. P. Lossers, Partitions of a circular set, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.
FORMULA
a(n) - 3*a(n-1) = A000975(n-3).
From Bruno Berselli, Jun 13 2014: (Start)
G.f.: x^4/(1 - 5*x + 5*x^2 + 5*x^3 - 6*x^4).
a(n) = ( 3^n - 4*2^n + (-1)^n + 6 )/24. (End)
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 6*a(n-4). - Wesley Ivan Hurt, May 27 2021
a(n) = Sum_{i=0..n-1} Stirling2(i,3)*(-1)^(i+n-1). (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024
MATHEMATICA
Table[(3^n - 4 2^n + (-1)^n + 6)/24, {n, 4, 30}] (* Bruno Berselli, Jun 13 2014 *)
PROG
(Magma) [(3^n-4*2^n+(-1)^n+6)/24: n in [4..30]]; // Bruno Berselli, Jun 13 2014
(PARI) for(n=4, 50, print1(( 3^n - 4*2^n + (-1)^n + 6 )/24, ", ")) \\ G. C. Greubel, Oct 11 2017
CROSSREFS
Cf. A000975 (3 affinity groups).
Column k=4 of A261139.
Sequence in context: A000343 A005324 A304011 * A154638 A054889 A056384
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jun 13 2014
STATUS
approved