login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].
3

%I #33 Jun 21 2024 15:35:49

%S 1,5,20,70,231,735,2290,7040,21461,65065,196560,592410,1782691,

%T 5358995,16098830,48340180,145107921,435498525,1306845100,3921234350,

%U 11765101151,35298099655,105899891370,317710858920,953154946381,2859509578385,8578618213640

%N Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].

%C The number of ways to partition a set of n people around a circular table into 4 affinity groups with no two members of a group seated next to each other [Knuth].

%C The first two primes of the sequence are a(5) and a(96). - _Bruno Berselli_, Jun 13 2014

%H G. C. Greubel, <a href="/A243869/b243869.txt">Table of n, a(n) for n = 4..1000</a>

%H J. R. Britnell and M. Wildon, <a href="http://arxiv.org/abs/1507.04803">Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D</a>, arXiv 1507.04803 [math.CO], 2015.

%H D. E. Knuth and O. P. Lossers, <a href="http://www.jstor.org/stable/27642185">Partitions of a circular set</a>, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5,-5,6).

%F a(n) - 3*a(n-1) = A000975(n-3).

%F From _Bruno Berselli_, Jun 13 2014: (Start)

%F G.f.: x^4/(1 - 5*x + 5*x^2 + 5*x^3 - 6*x^4).

%F a(n) = ( 3^n - 4*2^n + (-1)^n + 6 )/24. (End)

%F a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 6*a(n-4). - _Wesley Ivan Hurt_, May 27 2021

%F a(n) = Sum_{i=0..n-1} Stirling2(i,3)*(-1)^(i+n-1). (See _Peter Bala_'s original formula at A105794 dated Jul 10 2013.) - _Igor Victorovich Statsenko_, May 31 2024

%t Table[(3^n - 4 2^n + (-1)^n + 6)/24, {n, 4, 30}] (* _Bruno Berselli_, Jun 13 2014 *)

%o (Magma) [(3^n-4*2^n+(-1)^n+6)/24: n in [4..30]]; // _Bruno Berselli_, Jun 13 2014

%o (PARI) for(n=4,50, print1(( 3^n - 4*2^n + (-1)^n + 6 )/24, ", ")) \\ _G. C. Greubel_, Oct 11 2017

%Y Cf. A000975 (3 affinity groups).

%Y Column k=4 of A261139.

%K nonn,easy

%O 4,2

%A _R. J. Mathar_, Jun 13 2014