login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243872
Number of Dyck paths of semilength n having exactly 2 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
2
1, 4, 16, 65, 263, 1077, 4419, 18132, 74368, 304778, 1247972, 5105477, 20867862, 85219608, 347724794, 1417697157, 5775652743, 23512922998, 95657223246, 388912046916, 1580241458120, 6417249216667, 26046042351889, 105661066012240, 428430870576913
OFFSET
9,2
LINKS
Vaclav Kotesovec, Recurrence (of order 14)
FORMULA
a(n) ~ c * d^n * sqrt(n), where d = 3.992152919721564592666177480042427843835641823811... is the root of equation 1 - 2*d + d^2 - 6*d^5 + 2*d^6 - 4*d^9 + d^10 = 0, and c = 0.00000109315704269290466088403991068... . - Vaclav Kotesovec, Jul 16 2014
MAPLE
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 3)))
end:
a:= n-> coeff(b(2*n, 0, 1), z, 2):
seq(a(n), n=9..40);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Series[
b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]]+If[t==10, z, 1]*
b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]], {z, 0, 3}]]];
a[n_] := Coefficient[b[2n, 0, 1], z, 2];
a /@ Range[9, 40] (* Jean-François Alcover, Dec 27 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A243881.
Column k=738 of A243828.
Sequence in context: A373280 A033140 A181879 * A052927 A012781 A132820
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2014
STATUS
approved