login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, k<=0<=max(0,floor((n-1)/4)), read by rows. 12
1, 1, 2, 5, 14, 41, 1, 129, 3, 419, 10, 1395, 35, 4737, 124, 1, 16338, 454, 4, 57086, 1684, 16, 201642, 6305, 65, 718855, 23781, 263, 1, 2583149, 90209, 1077, 5, 9346594, 343809, 4419, 23, 34023934, 1315499, 18132, 105, 124519805, 5050144, 74368, 472, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.

LINKS

Alois P. Heinz, Rows n = 0..300, flattened

EXAMPLE

Triangle T(n,k) begins:

:  0 :        1;

:  1 :        1;

:  2 :        2;

:  3 :        5;

:  4 :       14;

:  5 :       41,       1;

:  6 :      129,       3;

:  7 :      419,      10;

:  8 :     1395,      35;

:  9 :     4737,     124,     1;

: 10 :    16338,     454,     4;

: 11 :    57086,    1684,    16;

: 12 :   201642,    6305,    65;

: 13 :   718855,   23781,   263,   1;

: 14 :  2583149,   90209,  1077,   5;

: 15 :  9346594,  343809,  4419,  23;

: 16 : 34023934, 1315499, 18132, 105;

MAPLE

b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,

     expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,

      z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]))))

    end:

T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):

seq(T(n), n=0..20);

MATHEMATICA

b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-Fran├žois Alcover, Mar 31 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A243870, A243871, A243872, A243873, A243874, A243875, A243876, A243877, A243878, A243879, A243880.

Row sums give A000108.

T(738,k) = A243752(738,k).

T(n,0) = A243753(n,738).

Cf. A243882.

Sequence in context: A007463 A159308 A163189 * A225691 A116846 A080558

Adjacent sequences:  A243878 A243879 A243880 * A243882 A243883 A243884

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Jun 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 01:23 EST 2019. Contains 329963 sequences. (Running on oeis4.)