login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243870
Number of Dyck paths of semilength n avoiding the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
2
1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855, 2583149, 9346594, 34023934, 124519805, 457889432, 1690971387, 6268769864, 23320702586, 87031840257, 325741788736, 1222429311437, 4598725914380, 17339388194985, 65514945338284
OFFSET
0,3
COMMENTS
UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.
LINKS
FORMULA
Recursion: see Maple program.
MAPLE
a:= proc(n) option remember; `if`(n<14, [1, 1, 2, 5, 14, 41,
129, 419, 1395, 4737, 16338, 57086, 201642, 718855][n+1],
((4*n-2)*a(n-1) -(3*n-9)*a(n-4) +(10*n-41)*a(n-5)
-(3*n-21)*a(n-8) +(8*n-64)*a(n-9) -(n-14)*a(n-10)
-(n-11)*a(n-12) +(2*n-25)*a(n-13) +(14-n)*a(n-14))/(n+1))
end:
seq(a(n), n=0..40);
MATHEMATICA
a[n_] := a[n] = If[n<14, {1, 1, 2, 5, 14, 41, 129, 419, 1395, 4737, 16338, 57086, 201642, 718855}[[n+1]], ((4n-2)a[n-1] - (3n-9)a[n-4] + (10n-41)a[n-5] - (3n-21)a[n-8] + (8n-64)a[n-9] - (n-14)a[n-10] - (n-11)a[n-12] + (2n-25)a[n-13] + (14-n)a[n-14])/(n+1)];
a /@ Range[0, 40] (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
CROSSREFS
Column k=0 of A243881.
Column k=738 of A243753.
Sequence in context: A036766 A366024 A222589 * A287968 A148322 A148323
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2014
STATUS
approved