login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222589
G.f. satisfies: A(x) = Sum_{n>=0} x^n*(1 + n*x)^n * A(x)^n / (1 + x*A(x) + n*x^2*A(x))^n.
0
1, 1, 2, 5, 14, 41, 128, 409, 1355, 4564, 15728, 54904, 194740, 698042, 2532483, 9270351, 34268276, 127677731, 479723132, 1815553953, 6923744832, 26587139445, 102838915279, 400513959602, 1571152132075, 6206954038519, 24705172805012, 99071049959707, 400475021255313
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1/2 + (1 + 2*x*A(x))/2 * Sum_{n>=0} (n+1)! * x^(2*n) * A(x)^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 128*x^6 + 409*x^7 +...
where:
A(x) = 1 + x*(1+x)*A(x)/(1+x*(1+x)*A(x)) + x^2*(1+2*x)^2*A(x)^2/(1+x*(1+2*x)*A(x))^2 + x^3*(1+3*x)^3*A(x)^3/(1+x*(1+3*x)*A(x))^3 + x^4*(1+4*x)^4*A(x)^4/(1+x*(1+4*x)*A(x))^4 +...
Also,
A(x) = 1/2 + (1 + 2*x*A(x))/2 * (1 + 2*x^2*A(x) + 6*x^4*A(x)^2 + 24*x^6*A(x)^3 + 120*x^8*A(x)^4 + 720*x^10*A(x)^5 + 5040*x^12*A(x)^6 +...).
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (x+m*x^2)^m*A^m / (1 + x*A+m*x^2*A +x*O(x^n))^m)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI)
{a(n)=local(A=1+x); for(i=1, n, A=1/2+(1+2*x*A)*sum(k=0, n, (k+1)!/2*x^(2*k)*(A+x*O(x^n))^k)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A187741.
Sequence in context: A356698 A036766 A366024 * A243870 A287968 A148322
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2013
STATUS
approved