login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222591
Numerators of (n*(n - 3)/6) + 1, arising as the maximum possible number of triple lines for an n-element set.
0
1, 5, 8, 4, 17, 23, 10, 38, 47, 19, 68, 80, 31, 107, 122, 46, 155, 173, 64, 212, 233, 85, 278, 302, 109, 353, 380, 136, 437, 467, 166, 530, 563, 199, 632, 668, 235, 743, 782, 274, 863, 905, 316, 992, 1037, 361, 1130, 1178, 409, 1277, 1328
OFFSET
3,2
COMMENTS
Numerators of (n*(n - 3)/6) + 1, which arises as the maximum possible number of triple lines for an n-element set, according to Green and Tao, cited in Elekes. The fractions for n = 3, 4, 5, 6, ... are 1/1, 5/3, 8/3, 4/1, 17/3, 23/3, 10/1, 38/3, 47/3, 19/1, 68/3, 80/3, 31/1, 107/3, 122/3, 46/1, 155/3, 173/3, 64/1, 212/3, 233/3, 85/1, 278/3, 302/3, 109/1, 353/3, 380/3, 136/1, 437/3, 467/3, 166/1, 530/3, 563/3, 199/1, 632/3, 668/3, 235/1, 743/3, 782/3, 274/1, 863/3, 905/3, 316/1, 992/3, 1037/3, 361/1, 1130/3, 1178/3, 409/1, 1277/3, 1328/3. The corresponding denominators are A169609.
LINKS
György Elekes, Endre Szabó, On Triple Lines and Cubic Curves --- the Orchard Problem revisited, arXiv:1302.5777 [math.CO], Feb 23, 2013.
EXAMPLE
a(10) = 38 because (10*(10 - 3)/6) + 1 = 38/3.
MATHEMATICA
Numerator[Table[(n(n-3))/6+1, {n, 3, 60}]] (* or *) LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {1, 5, 8, 4, 17, 23, 10, 38, 47}, 60] (* Harvey P. Dale, Feb 11 2015 *)
CROSSREFS
Cf. A169609.
Sequence in context: A020857 A096413 A334116 * A299447 A300085 A186691
KEYWORD
nonn,easy,frac
AUTHOR
Jonathan Vos Post, Feb 25 2013
STATUS
approved