|
|
A243883
|
|
Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.
|
|
1
|
|
|
5, 1, 13, 5, 29, 5, 53, 17, 85, 13, 125, 37, 173, 25, 229, 65, 293, 41, 365, 101, 445, 61, 533, 145, 629, 85, 733, 197, 845, 113, 965, 257, 1093, 145, 1229, 325, 1373, 181, 1525, 401, 1685, 221, 1853, 485, 2029, 265
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Denominator of circle radius r(n) is A143025(n+2). The integral radius appearing at n = 2, 6, 10, 14, ..., = 1, 5, 13, 25, ..., respectively which is A001844(n/4 - 1/2). Floor (r(n)) = A001971(n). For the case of sagitta = n and chord length = 1, the numerator and the denominator will be A053755(n) and A008590(n) respectively. See illustration in links.
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
Kival Ngaokrajang, Illustration for n = 1..5
Wikipedia, Sagitta
|
|
FORMULA
|
a(n) = numerator(n^2/8 + 1/2).
Empirical g.f.: -x*(x^11 +5*x^10 +x^9 +13*x^8 +2*x^7 +14*x^6 +2*x^5 +14*x^4 +5*x^3 +13*x^2 +x +5) / ((x -1)^3*(x +1)^3*(x^2 +1)^3). - Colin Barker, Jan 17 2015
|
|
PROG
|
(PARI){for (n=1, 100, print1(numerator(n^2/8+1/2), ", "))}
|
|
CROSSREFS
|
Cf. A143025, A001844, A001971.
Sequence in context: A147348 A081224 A104793 * A147004 A319664 A205961
Adjacent sequences: A243880 A243881 A243882 * A243884 A243885 A243886
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
Kival Ngaokrajang, Jun 13 2014
|
|
STATUS
|
approved
|
|
|
|