Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 27 2020 19:44:04
%S 1,4,16,65,263,1077,4419,18132,74368,304778,1247972,5105477,20867862,
%T 85219608,347724794,1417697157,5775652743,23512922998,95657223246,
%U 388912046916,1580241458120,6417249216667,26046042351889,105661066012240,428430870576913
%N Number of Dyck paths of semilength n having exactly 2 (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)).
%H Alois P. Heinz, <a href="/A243872/b243872.txt">Table of n, a(n) for n = 9..400</a>
%H Vaclav Kotesovec, <a href="/A243872/a243872.txt">Recurrence (of order 14)</a>
%F a(n) ~ c * d^n * sqrt(n), where d = 3.992152919721564592666177480042427843835641823811... is the root of equation 1 - 2*d + d^2 - 6*d^5 + 2*d^6 - 4*d^9 + d^10 = 0, and c = 0.00000109315704269290466088403991068... . - _Vaclav Kotesovec_, Jul 16 2014
%p b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
%p series(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
%p z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]), z, 3)))
%p end:
%p a:= n-> coeff(b(2*n, 0, 1), z, 2):
%p seq(a(n), n=9..40);
%t b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Series[
%t b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]]+If[t==10, z, 1]*
%t b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]], {z, 0, 3}]]];
%t a[n_] := Coefficient[b[2n, 0, 1], z, 2];
%t a /@ Range[9, 40] (* _Jean-François Alcover_, Dec 27 2020, after _Alois P. Heinz_ *)
%Y Column k=2 of A243881.
%Y Column k=738 of A243828.
%K nonn
%O 9,2
%A _Alois P. Heinz_, Jun 13 2014