login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054889
Layer counting sequence for hyperbolic tessellation by regular pentagons of angle 2*Pi/5.
3
1, 5, 20, 70, 245, 860, 3015, 10570, 37060, 129935, 455560, 1597225, 5599980, 19633910, 68837825, 241350100, 846189875, 2966799290, 10401800220, 36469419475, 127864266640, 448300820765, 1571773187140, 5510743762630
OFFSET
1,2
COMMENTS
The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.
LINKS
Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - N. J. A. Sloane, Nov 20 2022]
FORMULA
G.f.: x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4).
MATHEMATICA
LinearRecurrence[{3, 1, 3, -1}, {1, 5, 20, 70, 245}, 40] (* Georg Fischer, Apr 13 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4) )); // G. C. Greubel, Feb 08 2023
(Sage)
def A054889_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+2*x+4*x^2+2*x^3+x^4)/(1-3*x-x^2-3*x^3+x^4) ).list()
a=A054889_list(40); a[1:] # G. C. Greubel, Feb 08 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
EXTENSIONS
a(21) inserted by Georg Fischer, Apr 13 2020
STATUS
approved