login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080930
a(n) = 2^(n-3)*(n+2)*(n+3)*(n+4)/3.
6
1, 5, 20, 70, 224, 672, 1920, 5280, 14080, 36608, 93184, 232960, 573440, 1392640, 3342336, 7938048, 18677760, 43581440, 100925440, 232128512, 530579456, 1205862400, 2726297600, 6134169600, 13740539904, 30651973632, 68115496960
OFFSET
0,2
COMMENTS
Old definition was "Sequence associated with recurrence a(n)=2*a(n-1)+k(k+2)*a(n-2)". See the first comment in A080928.
The fourth column of triangle A080928 (after 0) is 4*a(n).
FORMULA
G.f.: (1-x)*(1-2*x+2*x^2)/(1-2*x)^4 = (1-3*x+4*x^2-2*x^3)/(1-2*x)^4.
a(n) = binomial(n+3,3)*2^(n-3), n>0. - Zerinvary Lajos, Oct 29 2006
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3, a(0)=1, a(1)=5, a(2)=20, a(3)=70. - Bruno Berselli, Aug 06 2013
E.g.f.: (3 +9*x +6*x^2 +x^3)*exp(2*x)/3. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*log(2) - 32.
Sum_{n>=0} (-1)^n/a(n) = 176 - 432*log(3/2). (End)
MAPLE
[seq (binomial(n+3, 3)*2^(n-3), n=1..27)]; # Zerinvary Lajos, Oct 29 2006
MATHEMATICA
CoefficientList[Series[(1-x)(1 -2x +2x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{8, -24, 32, -16}, {1, 5, 20, 70}, 30] (* Bruno Berselli, Aug 06 2013 *)
PROG
(Magma) [Binomial(n+3, 3)*2^(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
(PARI) a(n)=2^(n-3)*(n+2)*(n+3)*(n+4)/3 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [2^(n-2)*binomial(n+4, 3) for n in (0..30)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..30], n-> 2^(n-2)*Binomial(n+4, 3)); # G. C. Greubel, Aug 27 2019
CROSSREFS
Cf. A080928.
Sequence in context: A291288 A160549 A089094 * A169792 A000343 A005324
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 26 2003
EXTENSIONS
Edited by Bruno Berselli, Aug 06 2013
STATUS
approved