OFFSET
0,3
COMMENTS
These are Watson's coefficients beta'_n on page 125.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see p. 125.
FORMULA
From Seiichi Manyama, Nov 07 2016: (Start)
a(n) = A160539(n)/7, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^7) - 1)/7. (End)
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(13/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016
EXAMPLE
G.f. = x + 5*x^2 + 20*x^3 + 70*x^4 + 221*x^5 + 646*x^6 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[(Product[(1 - x^(7*j))/(1 - x^j)^7, {j, 1, nmax}] - 1)/7, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(eta(x^7)/eta(x)^7-1)/7) \\ Joerg Arndt, Nov 27 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 14 2009
EXTENSIONS
Typo in definition corrected by Seiichi Manyama, Nov 07 2016
STATUS
approved