login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160549
Omit first term from A160539 and divide by 7.
6
0, 1, 5, 20, 70, 221, 646, 1772, 4614, 11490, 27537, 63808, 143514, 314279, 671872, 1405260, 2881030, 5799093, 11476452, 22357584, 42922558, 81284699, 151974124, 280739800, 512761178, 926568075, 1657448779, 2936506316, 5155349836, 8972488674, 15487146900
OFFSET
0,3
COMMENTS
These are Watson's coefficients beta'_n on page 125.
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128; see p. 125.
FORMULA
From Seiichi Manyama, Nov 07 2016: (Start)
a(n) = A160539(n)/7, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^7) - 1)/7. (End)
a(n) ~ 2^(5/4) * exp(4*Pi*sqrt(2*n/7)) / (7^(13/4) * n^(9/4)). - Vaclav Kotesovec, Nov 10 2016
EXAMPLE
G.f. = x + 5*x^2 + 20*x^3 + 70*x^4 + 221*x^5 + 646*x^6 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[(Product[(1 - x^(7*j))/(1 - x^j)^7, {j, 1, nmax}] - 1)/7, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(eta(x^7)/eta(x)^7-1)/7) \\ Joerg Arndt, Nov 27 2016
CROSSREFS
Cf. A160539.
Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), A277974 (k=5), this sequence (k=7), A277912 (k=11).
Sequence in context: A007327 A055403 A291288 * A089094 A080930 A169792
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 14 2009
EXTENSIONS
Typo in definition corrected by Seiichi Manyama, Nov 07 2016
STATUS
approved