login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277912
Expansion of ((Product_{n>=1} (1 - x^(11*n))/(1 - x^n)^11) - 1)/11 in powers of x.
6
0, 1, 7, 38, 175, 714, 2653, 9139, 29563, 90650, 265401, 746142, 2023566, 5314008, 13554912, 33673525, 81654104, 193646588, 449903128, 1025532912, 2296519589, 5058078488, 10968488747, 23440057192, 49406752403, 102792264765, 211242738976, 429066735314, 861868377262, 1713014236294, 3370525567099
OFFSET
0,3
LINKS
FORMULA
G.f.: ((Product_{n>=1} (1 - x^(11*n))/(1 - x^n)^11) - 1)/11.
a(n) ~ 5^(11/4) * exp(4*Pi*sqrt(5*n/11)) / (sqrt(2)*11^(17/4)*n^(13/4)). - Vaclav Kotesovec, Nov 10 2016
EXAMPLE
G.f. = x + 7*x^2 + 38*x^3 + 175*x^4 + 714*x^5 + 2653*x^6 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[(Product[(1 - x^(11*j))/(1 - x^j)^11, {j, 1, nmax}] - 1)/11, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^11] / QPochhammer[ x]^11 - 1) / 11, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^11 + A) / eta(x + A)^11 - 1) / 11, n))}; /* Michael Somos, Nov 13 2016 */
(PARI) x='x+O('x^66); concat([0], Vec(eta(x^11)/eta(x)^11-1)/11) \\ Joerg Arndt, Nov 27 2016
CROSSREFS
Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), A277974 (k=5), A160549 (k=7), this sequence (k=11).
Sequence in context: A249354 A249021 A114290 * A000531 A296769 A241524
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved