OFFSET
0,2
COMMENTS
a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
From Alois P. Heinz, Oct 08 2022: (Start)
a(n) = A001299(100*n).
G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)
EXAMPLE
There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
MAPLE
f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f, x, 100*n+1), polynom)-convert(series(f, x, 100*n), polynom)) /x^(100*n);
a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
PROG
(PARI) a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ Andrew Howroyd, Feb 02 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lee A. Newberg, May 18 2009, Jun 15 2009
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Feb 02 2020
STATUS
approved