login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160551
Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25.
3
1, 242, 1463, 4464, 10045, 19006, 32147, 50268, 74169, 104650, 142511, 188552, 243573, 308374, 383755, 470516, 569457, 681378, 807079, 947360, 1103021, 1274862, 1463683, 1670284, 1895465, 2140026, 2404767, 2690488, 2997989, 3328070, 3681531, 4059172, 4461793
OFFSET
0,2
COMMENTS
a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n.
FORMULA
a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
From Alois P. Heinz, Oct 08 2022: (Start)
a(n) = A001299(100*n).
G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)
EXAMPLE
There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
MAPLE
f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f, x, 100*n+1), polynom)-convert(series(f, x, 100*n), polynom)) /x^(100*n);
a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
PROG
(PARI) a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ Andrew Howroyd, Feb 02 2020
CROSSREFS
Cf. A001299.
Sequence in context: A258894 A258887 A234484 * A258886 A354563 A354565
KEYWORD
nonn,easy
AUTHOR
Lee A. Newberg, May 18 2009, Jun 15 2009
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Feb 02 2020
STATUS
approved