OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 10, and 25. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 175
Gerhard Kirchner, Derivation of formulas
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = round((100*x^3 + 135*x^2 +53*x)/6) + 1 with x= floor(n/5)/10. See link "Derivation of formulas". - Gerhard Kirchner, Feb 23 2017
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 4*x^10 + ...
MATHEMATICA
CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 65} ], x ]
Table[Length[FrobeniusSolve[{1, 5, 10, 25}, n]], {n, 0, 80}] (* Harvey P. Dale, Dec 01 2015 *)
a[ n_] := With[ {m = Quotient[n, 5] / 10}, Round[ (4 m + 3) (5 m + 1) (5 m + 2) / 6]]; (* Michael Somos, Feb 23 2017 *)
PROG
(Haskell)
a001299 = p [1, 5, 10, 25] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
(PARI) a(n)=floor((n\5+1)*((n\5+2)*(2-n%5)/100+[54, 27, -2, -33, -66][n%5+1]/500)+(2-5*(n%5%2))*(-1)^n/40+(2*n^3+123*n^2+2146*n+16290)/15000) \\ Tani Akinari, May 09 2014
(PARI) {a(n) = my(m=n\5 / 10); round((4*m + 3) * (5*m + 1) * (5*m + 2) / 6)}; /* Michael Somos, Feb 23 2017 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 15 1996
STATUS
approved