login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169718
Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents.
7
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134
OFFSET
0,6
COMMENTS
a(n) = A001300(n) for n < 100; a(n) = A001299(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, 25, 50, and 100. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).
MATHEMATICA
Table[Length[FrobeniusSolve[{1, 5, 10, 25, 50, 100}, n]], {n, 0, 80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)), {x, 0, 80}], x] (* Harvey P. Dale, Dec 25 2011 *)
PROG
(Haskell)
a169718 = p [1, 5, 10, 25, 50, 100] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 20 2010
STATUS
approved