login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001297
Stirling numbers of the second kind S(n+3, n).
(Formerly M4974 N2136)
17
0, 1, 15, 90, 350, 1050, 2646, 5880, 11880, 22275, 39325, 66066, 106470, 165620, 249900, 367200, 527136, 741285, 1023435, 1389850, 1859550, 2454606, 3200450, 4126200, 5265000, 6654375, 8336601, 10359090, 12774790, 15642600, 19027800
OFFSET
0,3
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq., Vol. 13 (2010), Article 10.4.4, page 5.
Martin Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., Vol. 15 (1923), pp. 3-4. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
FORMULA
G.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - Paul Barry, Aug 05 2004
E.g.f. with offset -2: exp(x)*(1*(x^3)/3! + 11*(x^4)/4! + 25*(x^5)/5! + 15*(x^6)/6!). For the coefficients [1, 11, 25, 15] see triangle A112493. E.g.f.: 1/48*x*exp(x)*(x^5+22*x^4+152*x^3+384*x^2+312*x+48)/48. Above given e.g.f. differentiated twice.
a(n) = (binomial(n+4, n-1) - binomial(n+3, n-2))*(binomial(n+2, n-1) - binomial(n+1, n-2)). - Zerinvary Lajos, May 12 2006
a(n) = binomial(n+1, 2)*binomial(n+3, 4). - Vladimir Shevelev, Dec 18 2011
O.g.f.: D^3(x/(1-x)) = D^4(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A001303(-3-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k+2,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 464/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 260/9 - 4*Pi^2/3 - 64*log(2)/3. (End)
a(n) = Sum_{0<=i<=j<=k<=n} i*j*k. - Robert FERREOL, May 25 2022
EXAMPLE
a(2) = 1*1*1 + 1*1*2 + 1*2*2 + 2*2*2 = 15
MAPLE
A001297:=-(1+8*z+6*z**2)/(z-1)**7; # Simon Plouffe in his 1992 dissertation, without the initial 0
MATHEMATICA
lst={}; Do[f=StirlingS2[n+3, n]; AppendTo[lst, f], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
a[ n_] := n^2 (n + 1)^2 (n + 2) (n + 3) / 48; (* Michael Somos, Sep 04 2017 *)
Table[StirlingS2[n+3, n], {n, 0, 30}] (* Harvey P. Dale, Dec 30 2019 *)
PROG
(PARI) {a(n) = n^2 * (n+1)^2 * (n+2) * (n+3) / 48}; /* Michael Somos, Sep 04 2017 */
(Sage) [stirling_number2(n+3, n) for n in range(0, 34)] # Zerinvary Lajos, May 16 2009
(Magma) [n^2*(n+1)^2*(n+2)*(n+3)/48: n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
KEYWORD
nonn,easy
EXTENSIONS
Initial zero added by N. J. A. Sloane, Jan 21 2008
Name corrected by Nathaniel Johnston, Apr 30 2011
STATUS
approved