login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling numbers of the second kind S(n+3, n).
(Formerly M4974 N2136)
17

%I M4974 N2136 #101 Jul 11 2022 09:24:52

%S 0,1,15,90,350,1050,2646,5880,11880,22275,39325,66066,106470,165620,

%T 249900,367200,527136,741285,1023435,1389850,1859550,2454606,3200450,

%U 4126200,5265000,6654375,8336601,10359090,12774790,15642600,19027800

%N Stirling numbers of the second kind S(n+3, n).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

%D Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001297/b001297.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Steve Butler and Pavel Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq., Vol. 13 (2010), Article 10.4.4, page 5.

%H Martin Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Griffiths2/griffiths17.html">Remodified Bessel Functions via Coincidences and Near Coincidences</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.

%H C. Krishnamachaki, <a href="/A001296/a001296.pdf">The operator (xD)^n</a>, J. Indian Math. Soc., Vol. 15 (1923), pp. 3-4. [Annotated scanned copy]

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Stirling numbers of the 2nd kind</a>.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F G.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - _Paul Barry_, Aug 05 2004

%F E.g.f. with offset -2: exp(x)*(1*(x^3)/3! + 11*(x^4)/4! + 25*(x^5)/5! + 15*(x^6)/6!). For the coefficients [1, 11, 25, 15] see triangle A112493. E.g.f.: 1/48*x*exp(x)*(x^5+22*x^4+152*x^3+384*x^2+312*x+48)/48. Above given e.g.f. differentiated twice.

%F a(n) = (binomial(n+4, n-1) - binomial(n+3, n-2))*(binomial(n+2, n-1) - binomial(n+1, n-2)). - _Zerinvary Lajos_, May 12 2006

%F a(n) = binomial(n+1, 2)*binomial(n+3, 4). - _Vladimir Shevelev_, Dec 18 2011

%F O.g.f.: D^3(x/(1-x)) = D^4(x), where D is the operator x/(1-x)*d/dx. - _Peter Bala_, Jul 02 2012

%F a(n) = A001303(-3-n) for all n in Z. - _Michael Somos_, Sep 04 2017

%F a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k+2,k-1). - _Wesley Ivan Hurt_, Sep 21 2017

%F From _Amiram Eldar_, Jan 10 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 464/9.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 260/9 - 4*Pi^2/3 - 64*log(2)/3. (End)

%F a(n) = Sum_{0<=i<=j<=k<=n} i*j*k. - _Robert FERREOL_, May 25 2022

%e a(2) = 1*1*1 + 1*1*2 + 1*2*2 + 2*2*2 = 15

%p A001297:=-(1+8*z+6*z**2)/(z-1)**7; # _Simon Plouffe_ in his 1992 dissertation, without the initial 0

%t lst={};Do[f=StirlingS2[n+3, n];AppendTo[lst, f], {n, 0, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *)

%t a[ n_] := n^2 (n + 1)^2 (n + 2) (n + 3) / 48; (* _Michael Somos_, Sep 04 2017 *)

%t Table[StirlingS2[n+3,n],{n,0,30}] (* _Harvey P. Dale_, Dec 30 2019 *)

%o (PARI) {a(n) = n^2 * (n+1)^2 * (n+2) * (n+3) / 48}; /* _Michael Somos_, Sep 04 2017 */

%o (Sage) [stirling_number2(n+3,n) for n in range(0, 34)] # _Zerinvary Lajos_, May 16 2009

%o (Magma) [n^2*(n+1)^2*(n+2)*(n+3)/48: n in [0..40]]; // _Vincenzo Librandi_, Sep 22 2017

%Y Cf. A001296, A001298, A008277, A008517, A048993, A062196, A094262.

%Y Cf. A001303.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E Initial zero added by _N. J. A. Sloane_, Jan 21 2008

%E Name corrected by _Nathaniel Johnston_, Apr 30 2011