OFFSET
0,2
COMMENTS
Also the number of 4-cycles in the (n+3)-triangular graph. - Eric W. Weisstein, Aug 14 2017
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Johnson Graph.
Eric Weisstein's World of Mathematics, Triangular Graph.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.
G.f.: 15*x/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Aug 14 2017
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 131/36. (End)
MAPLE
MATHEMATICA
Table[Pochhammer[n, 5]/8, {n, 0, 31}] (* or *)
Rest @ CoefficientList[Series[15 x^2/(1 - x)^6, {x, 0, 32}], x] (* Michael De Vlieger, Feb 12 2017 *)
Pochhammer[Range[0, 20], 5]/8 (* Eric W. Weisstein, Aug 14 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 15, 90, 315, 840, 1890}, 20] (* Eric W. Weisstein, Aug 14 2017 *)
Table[15 Binomial[n + 4, 5], {n, 0, 20}] (* Eric W. Weisstein, Aug 14 2017 *)
15 Binomial[Range[4, 24], 5] (* Eric W. Weisstein, Aug 14 2017 *)
Table[(24 n+50 n^2+35 n^3+10 n^4+n^5)/8, {n, 0, 40}] (* or *) Table[Times@@Range[n, n+4]/8, {n, 0, 40}] (* Harvey P. Dale, Mar 06 2024 *)
PROG
(PARI) a(n)=n*(n+1)*(n+2)*(n+3)*(n+4)/8 \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jul 21 2009
EXTENSIONS
Offset corrected by Eric W. Weisstein, Aug 14 2017
STATUS
approved