login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151974
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.
4
0, 15, 90, 315, 840, 1890, 3780, 6930, 11880, 19305, 30030, 45045, 65520, 92820, 128520, 174420, 232560, 305235, 395010, 504735, 637560, 796950, 986700, 1210950, 1474200, 1781325, 2137590, 2548665, 3020640, 3560040, 4173840, 4869480, 5654880, 6538455, 7529130
OFFSET
0,2
COMMENTS
Also the number of 4-cycles in the (n+3)-triangular graph. - Eric W. Weisstein, Aug 14 2017
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Johnson Graph.
Eric Weisstein's World of Mathematics, Triangular Graph.
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.
G.f.: 15*x/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Aug 14 2017
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 131/36. (End)
MAPLE
A151974:=n->n*(n+1)*(n+2)*(n+3)*(n+4)/8: seq(A151974(n), n=0..60); # Wesley Ivan Hurt, Feb 11 2017
MATHEMATICA
Table[Pochhammer[n, 5]/8, {n, 0, 31}] (* or *)
Rest @ CoefficientList[Series[15 x^2/(1 - x)^6, {x, 0, 32}], x] (* Michael De Vlieger, Feb 12 2017 *)
Pochhammer[Range[0, 20], 5]/8 (* Eric W. Weisstein, Aug 14 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 15, 90, 315, 840, 1890}, 20] (* Eric W. Weisstein, Aug 14 2017 *)
Table[15 Binomial[n + 4, 5], {n, 0, 20}] (* Eric W. Weisstein, Aug 14 2017 *)
15 Binomial[Range[4, 24], 5] (* Eric W. Weisstein, Aug 14 2017 *)
Table[(24 n+50 n^2+35 n^3+10 n^4+n^5)/8, {n, 0, 40}] (* or *) Table[Times@@Range[n, n+4]/8, {n, 0, 40}] (* Harvey P. Dale, Mar 06 2024 *)
PROG
(PARI) a(n)=n*(n+1)*(n+2)*(n+3)*(n+4)/8 \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
Cf. A054559.
Cf. A002417 (number of 3-cycles in the triangular graph), A290939 (5-cycles), A290940 (6-cycles).
Sequence in context: A316224 A022707 A323334 * A179096 A328994 A001297
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by Eric W. Weisstein, Aug 14 2017
STATUS
approved