login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290939
Number of 5-cycles in the n-triangular graph.
3
0, 0, 24, 312, 1584, 5376, 14448, 33264, 68544, 129888, 230472, 387816, 624624, 969696, 1458912, 2136288, 3055104, 4279104, 5883768, 7957656, 10603824, 13941312, 18106704, 23255760, 29565120, 37234080, 46486440, 57572424, 70770672, 86390304, 104773056, 126295488
OFFSET
2,3
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(n) = 12/5 * binomial(n, 4) * (n^2 + 7*n - 34).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: (24 x^2 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7.
MATHEMATICA
Table[12/5 Binomial[n, 4] (n^2 + 7 n - 34), {n, 2, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 24, 312, 1584, 5376, 14448}, 20]
CoefficientList[Series[(24 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n)=12*binomial(n, 4)*(n^2+7*n-34)/5 \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
Cf. A002417 (number of 3-cycles in the triangular graph), A151974 (4-cycles), A290940 (6-cycles).
Sequence in context: A096821 A168303 A053215 * A004413 A319554 A069779
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 14 2017
STATUS
approved