login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151977
Numbers that are congruent to {0, 1} mod 16.
5
0, 1, 16, 17, 32, 33, 48, 49, 64, 65, 80, 81, 96, 97, 112, 113, 128, 129, 144, 145, 160, 161, 176, 177, 192, 193, 208, 209, 224, 225, 240, 241, 256, 257, 272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369, 384, 385, 400, 401, 416, 417, 432, 433, 448, 449
OFFSET
1,3
COMMENTS
Numbers k such that k^2 - k is divisible by 16.
FORMULA
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(k)=2^(k+3) for k > 0; {b(n)} = 1,16,32,64,128,256,... - Philippe Deléham, Oct 17 2011
G.f.: x^2*(1+15*x)/((1+x)*(1-x)^2). - Vincenzo Librandi, Jul 11 2012
a(n) = (32*n - 14*(-1)^n - 46)/4. - Vincenzo Librandi, Jul 11 2012
From David Lovler, Aug 18 2022: (Start)
a(n) = A321212(n) - 2.
a(n) = a(n-2) + 16.
E.g.f.: 15 + ((16*x - 23)*exp(x) - 7*exp(-x))/2. (End)
MATHEMATICA
CoefficientList[Series[x*(1+15*x)/((1+x)(1-x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 11 2012 *)
LinearRecurrence[{1, 1, -1}, {0, 1, 16}, 80] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) forstep(n=0, 200, [1, 15], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(PARI) a(n) = (16*n - 7*(-1)^n - 23)/2 \\ David Lovler, Aug 18 2022
(Magma) [(32*n-14*(-1)^n-46)/4: n in [1..60]]; // Vincenzo Librandi, Jul 11 2012
CROSSREFS
Cf. A321212.
Sequence in context: A241751 A374559 A244431 * A252492 A319281 A022106
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 23 2009
STATUS
approved