The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151979 Numbers congruent to {0, 1} (mod 19). 5
 0, 1, 19, 20, 38, 39, 57, 58, 76, 77, 95, 96, 114, 115, 133, 134, 152, 153, 171, 172, 190, 191, 209, 210, 228, 229, 247, 248, 266, 267, 285, 286, 304, 305, 323, 324, 342, 343, 361, 362, 380, 381, 399, 400, 418, 419, 437, 438, 456, 457, 475, 476, 494, 495, 513, 514, 532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Numbers m such that m^2 - m is divisible by 19. LINKS David Lovler, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n+1) = Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1 and b(k)=19*2^(k-1) for k>0. - Philippe Deléham, Oct 19 2011 G.f.: x^2*(1+18*x)/((1-x)^2*(1+x)). - Colin Barker, Apr 09 2012 a(n) = a(n-1) + a(n-2) - a(n-3). - Colin Barker, Apr 09 2012 From Stefano Spezia, Feb 01 2020: (Start) a(n) = (1/4)*(38*n - 55 - 17*(-1)^n). E.g.f.: (19/2)*(x*(cosh(x) + sinh(x)) - sinh(x)) - 18*(cosh(x) - 1). (End) MATHEMATICA Select[Range[0, 600], MemberQ[{0, 1}, Mod[#, 19]]&] (* Harvey P. Dale, Feb 11 2019 *) PROG (Magma) [n : n in [0..600] | n mod 19 in [0, 1]]; // Vincenzo Librandi, Feb 04 2020 (PARI) a(n) = (1/4)*(38*n - 55 - 17*(-1)^n); \\ David Lovler, Jul 25 2022 CROSSREFS Sequence in context: A274340 A241849 A054304 * A022109 A041730 A041732 Adjacent sequences: A151976 A151977 A151978 * A151980 A151981 A151982 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Aug 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 17:52 EDT 2024. Contains 372880 sequences. (Running on oeis4.)