login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151979
Numbers congruent to {0, 1} (mod 19).
5
0, 1, 19, 20, 38, 39, 57, 58, 76, 77, 95, 96, 114, 115, 133, 134, 152, 153, 171, 172, 190, 191, 209, 210, 228, 229, 247, 248, 266, 267, 285, 286, 304, 305, 323, 324, 342, 343, 361, 362, 380, 381, 399, 400, 418, 419, 437, 438, 456, 457, 475, 476, 494, 495, 513, 514, 532
OFFSET
1,3
COMMENTS
Numbers m such that m^2 - m is divisible by 19.
FORMULA
a(n+1) = Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1 and b(k)=19*2^(k-1) for k>0. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+18*x)/((1-x)^2*(1+x)). - Colin Barker, Apr 09 2012
a(n) = a(n-1) + a(n-2) - a(n-3). - Colin Barker, Apr 09 2012
From Stefano Spezia, Feb 01 2020: (Start)
a(n) = (1/4)*(38*n - 55 - 17*(-1)^n).
E.g.f.: (19/2)*(x*(cosh(x) + sinh(x)) - sinh(x)) - 18*(cosh(x) - 1). (End)
MATHEMATICA
Select[Range[0, 600], MemberQ[{0, 1}, Mod[#, 19]]&] (* Harvey P. Dale, Feb 11 2019 *)
PROG
(Magma) [n : n in [0..600] | n mod 19 in [0, 1]]; // Vincenzo Librandi, Feb 04 2020
(PARI) a(n) = (1/4)*(38*n - 55 - 17*(-1)^n); \\ David Lovler, Jul 25 2022
CROSSREFS
Sequence in context: A274340 A241849 A054304 * A022109 A041730 A041732
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 23 2009
STATUS
approved