login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to {0, 1} (mod 19).
5

%I #53 Aug 08 2022 20:25:26

%S 0,1,19,20,38,39,57,58,76,77,95,96,114,115,133,134,152,153,171,172,

%T 190,191,209,210,228,229,247,248,266,267,285,286,304,305,323,324,342,

%U 343,361,362,380,381,399,400,418,419,437,438,456,457,475,476,494,495,513,514,532

%N Numbers congruent to {0, 1} (mod 19).

%C Numbers m such that m^2 - m is divisible by 19.

%H David Lovler, <a href="/A151979/b151979.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n+1) = Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1 and b(k)=19*2^(k-1) for k>0. - _Philippe Deléham_, Oct 19 2011

%F G.f.: x^2*(1+18*x)/((1-x)^2*(1+x)). - _Colin Barker_, Apr 09 2012

%F a(n) = a(n-1) + a(n-2) - a(n-3). - _Colin Barker_, Apr 09 2012

%F From _Stefano Spezia_, Feb 01 2020: (Start)

%F a(n) = (1/4)*(38*n - 55 - 17*(-1)^n).

%F E.g.f.: (19/2)*(x*(cosh(x) + sinh(x)) - sinh(x)) - 18*(cosh(x) - 1). (End)

%t Select[Range[0,600],MemberQ[{0,1},Mod[#,19]]&] (* _Harvey P. Dale_, Feb 11 2019 *)

%o (Magma) [n : n in [0..600] | n mod 19 in [0, 1]]; // _Vincenzo Librandi_, Feb 04 2020

%o (PARI) a(n) = (1/4)*(38*n - 55 - 17*(-1)^n); \\ _David Lovler_, Jul 25 2022

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, Aug 23 2009