login
A022106
Fibonacci sequence beginning 1, 16.
3
1, 16, 17, 33, 50, 83, 133, 216, 349, 565, 914, 1479, 2393, 3872, 6265, 10137, 16402, 26539, 42941, 69480, 112421, 181901, 294322, 476223, 770545, 1246768, 2017313, 3264081, 5281394, 8545475, 13826869
OFFSET
0,2
COMMENTS
a(n-1)=sum(P(16;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=15. These are the SW-NE diagonals in P(16;n,k), the (16,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=16. a(-1):=15.
G.f.: (1+15*x)/(1-x-x^2).
MATHEMATICA
a={}; b=1; c=16; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {1, 16}, 40] (* Harvey P. Dale, Jun 22 2016 *)
PROG
(Magma) a0:=1; a1:=16; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(15, n+1) = A101220(15, 0, n+1).
Sequence in context: A151977 A252492 A319281 * A041518 A042195 A041520
KEYWORD
nonn,easy
STATUS
approved