login
A022108
Fibonacci sequence beginning 1, 18.
2
1, 18, 19, 37, 56, 93, 149, 242, 391, 633, 1024, 1657, 2681, 4338, 7019, 11357, 18376, 29733, 48109, 77842, 125951, 203793, 329744, 533537, 863281, 1396818, 2260099, 3656917, 5917016, 9573933, 15490949
OFFSET
0,2
COMMENTS
a(n-1)=sum(P(18;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=17. These are the SW-NE diagonals in P(18;n,k), the (18,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
FORMULA
a(n)= a(n-1)+a(n-2), n>=2, a(0)=1, a(1)=18. a(-1):=17.
G.f.: (1+17*x)/(1-x-x^2).
MATHEMATICA
a={}; b=1; c=18; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {1, 18}, 40] (* Harvey P. Dale, Apr 15 2018 *)
PROG
(Magma) a0:=1; a1:=18; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
CROSSREFS
a(n) = A109754(17, n+1) = A101220(17, 0, n+1).
Sequence in context: A301601 A056022 A118510 * A041654 A041656 A042507
KEYWORD
nonn,easy
STATUS
approved