login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151972
Numbers that are congruent to {0, 1, 6, 10} mod 15.
4
0, 1, 6, 10, 15, 16, 21, 25, 30, 31, 36, 40, 45, 46, 51, 55, 60, 61, 66, 70, 75, 76, 81, 85, 90, 91, 96, 100, 105, 106, 111, 115, 120, 121, 126, 130, 135, 136, 141, 145, 150, 151, 156, 160, 165, 166, 171, 175, 180, 181, 186, 190, 195, 196, 201, 205, 210, 211, 216, 220, 225
OFFSET
1,3
COMMENTS
Also, numbers n such that n^2 - n is divisible by 15.
Also, numbers n such that n^2 - n is divisible by 30.
FORMULA
G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016
MAPLE
A151972:=n->(30*n-41-5*I^(2*n)+(3+3*I)*I^(-n)+(3-3*I)*I^n)/8: seq(A151972(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
Select[Range[0, 300], Divisible[#^2-#, 15]&] (* Harvey P. Dale, Apr 01 2011, altered by Eric M. Schmidt, Aug 05 2012 *)
PROG
(Magma) [ n : n in [0..1000] | n mod 15 in [0, 1, 6, 10]]; // Vincenzo Librandi, Apr 02 2011, simplified by Eric M. Schmidt, Aug 05 2012
(Magma) [ n: n in [0..1000] | (n^2-n) mod (15) eq 0 ]; // Vincenzo Librandi, Apr 03 2011, altered by Eric M. Schmidt, Aug 05 2012
CROSSREFS
For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.
Sequence in context: A361606 A095678 A339116 * A094564 A271354 A315240
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 23 2009
EXTENSIONS
This is a merge of two identical sequences, A151972 and A151975.
STATUS
approved