OFFSET
1,3
COMMENTS
Also, numbers n such that n^2 - n is divisible by 15.
Also, numbers n such that n^2 - n is divisible by 30.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016
MAPLE
A151972:=n->(30*n-41-5*I^(2*n)+(3+3*I)*I^(-n)+(3-3*I)*I^n)/8: seq(A151972(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
Select[Range[0, 300], Divisible[#^2-#, 15]&] (* Harvey P. Dale, Apr 01 2011, altered by Eric M. Schmidt, Aug 05 2012 *)
PROG
(Magma) [ n : n in [0..1000] | n mod 15 in [0, 1, 6, 10]]; // Vincenzo Librandi, Apr 02 2011, simplified by Eric M. Schmidt, Aug 05 2012
(Magma) [ n: n in [0..1000] | (n^2-n) mod (15) eq 0 ]; // Vincenzo Librandi, Apr 03 2011, altered by Eric M. Schmidt, Aug 05 2012
CROSSREFS
For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 23 2009
STATUS
approved