OFFSET
0,3
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
G.f.: x*(1 + 2*x + 3*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = A087960(n) + 3*n - 1. (End)
EXAMPLE
a(3) = 9 because 9^2 = 81 = 6*12 + 9, hence 81 == 9 (mod 12).
MAPLE
m = 12 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
MATHEMATICA
Select[Range[0, 180], Mod[#^2, 12] == Mod[#, 12] &] (* or *)
CoefficientList[Series[x (1 + 2 x + 3 x^2)/((x^2 + 1) (x - 1)^2), {x, 0, 60}], x] (* Michael De Vlieger, Jul 01 2016 *)
PROG
(PARI) is(n)=(n^2-n)%12==0 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeremy Gardiner, Dec 28 2005
STATUS
approved