login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112652
a(n) squared is congruent to a(n) (mod 12).
7
0, 1, 4, 9, 12, 13, 16, 21, 24, 25, 28, 33, 36, 37, 40, 45, 48, 49, 52, 57, 60, 61, 64, 69, 72, 73, 76, 81, 84, 85, 88, 93, 96, 97, 100, 105, 108, 109, 112, 117, 120, 121, 124, 129, 132, 133, 136, 141, 144, 145, 148, 153, 156, 157, 160, 165, 168, 169, 172, 177, 180
OFFSET
0,3
COMMENTS
Numbers m such that A000217(3*m)/2 + A000217(2*m)/3 is an integer. - Bruno Berselli, Jul 01 2016
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
G.f.: x*(1 + 2*x + 3*x^2)/((x^2 + 1)*(x - 1)^2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = A087960(n) + 3*n - 1. (End)
EXAMPLE
a(3) = 9 because 9^2 = 81 = 6*12 + 9, hence 81 == 9 (mod 12).
MAPLE
m = 12 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
MATHEMATICA
Select[Range[0, 180], Mod[#^2, 12] == Mod[#, 12] &] (* or *)
CoefficientList[Series[x (1 + 2 x + 3 x^2)/((x^2 + 1) (x - 1)^2), {x, 0, 60}], x] (* Michael De Vlieger, Jul 01 2016 *)
PROG
(PARI) is(n)=(n^2-n)%12==0 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A368742 A312848 A010413 * A272933 A367929 A243650
KEYWORD
nonn,easy
AUTHOR
Jeremy Gardiner, Dec 28 2005
STATUS
approved