OFFSET
1,3
COMMENTS
Nonnegative integers m such that floor(k*m^2/11) = k*floor(m^2/11), where k can assume the values from 4 to 10. See the second comment in A265187. - Bruno Berselli, Dec 03 2015
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
From Colin Barker, Apr 11 2012: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4).
G.f.: x^2*(1+9*x+x^2)/((1-x)^2*(1+x+x^2)). (End)
EXAMPLE
a(3) = 11 because 11^3 = 1331 == 0 (mod 11) and 11 == 0 (mod 11).
MAPLE
m = 11 for n = 1 to 300 if n^3 mod m = n mod m then print n; next n
MATHEMATICA
Select[Range@ 209, Mod[#, 11] == Mod[#^3, 11] &] (* Michael De Vlieger, Dec 03 2015 *)
Select[Range[0, 250], PowerMod[#, 3, 11]==Mod[#, 11]&] (* Harvey P. Dale, May 15 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeremy Gardiner, Dec 28 2005
STATUS
approved