login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265187
Nonnegative m for which 2*floor(m^2/11) = floor(2*m^2/11).
4
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84
OFFSET
1,3
COMMENTS
Also, nonnegative m not congruent to 3 or 8 (mod 11).
Integers x >= 0 satisfying k*floor(x^2/11) = floor(k*x^2/11) with k >= 0:
k = 0, 1: x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... (A001477);
k = 2: x = 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, ... (this sequence);
k = 3: x = 0, 1, 5, 6, 10, 11, 12, 16, 17, 21, 22, ... (A265188);
k = 4..10: x = 0, 1, 10, 11, 12, 21, 22, 23, 32, 33, ... (A112654);
k > 10: x = 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, ... (A008593).
Primes in sequence: 2, 5, 7, 11, 13, 17, 23, 29, 31, 37, 43, 53, 59, ...
FORMULA
G.f.: x^2*(1 + x + 2*x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + x^8)/((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
MATHEMATICA
Select[Range[0, 100], 2 Floor[#^2/11] == Floor[2 #^2/11] &]
Select[Range[0, 100], ! MemberQ[{3, 8}, Mod[#, 11]] &]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7, 9, 10, 11}, 80]
PROG
(Sage) [n for n in (0..100) if 2*floor(n^2/11) == floor(2*n^2/11)]
(Magma) [n: n in [0..100] | 2*Floor(n^2/11) eq Floor(2*n^2/11)];
(PARI) is(n)=2*(n^2\11) == (2*n^2)\11 \\ Anders Hellström, Dec 05 2015
CROSSREFS
Cf. similar sequences provided by 2*floor(m^2/h) = floor(2*m^2/h): A005843 (h=2), A001477 (h=3,4), A008854 (h=5), A047266 (h=6), A047299 (h=7), A042965 (h=8), A060464 (h=9), A237415 (h=10), this sequence (h=11), A047263 (h=12).
Sequence in context: A183299 A282532 A039243 * A039186 A184516 A184738
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 04 2015
STATUS
approved